Noise Estimation, Noise Reduction and Intensity Inhomogeneity Correction in MRI Images of the Brain
نویسنده
چکیده
Noise Estimation, Noise Reduction and Intensity Inhomogeneity Correction in MRI Images of the Brain Michael Eziashi Osadebey, Ph.D. Concordia University, 2015 Rician noise and intensity inhomogeneity are two common types of image degradation that manifest in the acquisition of magnetic resonance imaging (MRI) system images of the brain. Many noise reduction and intensity inhomogeneity correction algorithms are based on strong parametric assumptions. These parametric assumptions are generic and do not account for salient features that are unique to specific classes and different levels of degradation in natural images. This thesis proposes the 4-neighborhood clique system in a layer-structured Markov random field (MRF) model for noise estimation and noise reduction. When the test image is the only physical system under consideration, it is regarded as a single layer Markov random field (SLMRF) model, and as a double layer MRF model when the test images and classical priors are considered. A scientific principle states that segmentation trivializes the task of bias field correction. Another principle states that the bias field distorts the intensity but not the spatial attribute of an image. This thesis exploits these two widely acknowledged scientific principles in order to propose a new model for correction of intensity inhomogeneity. The noise estimation algorithm is invariant to the presence or absence of background features in an image and more accurate in the estimation of noise levels because it is potentially immune to the modeling errors inherent in some current state-of-the-art algorithms. The noise reduction algorithm derived from the SLMRF model does not incorporate a regularization parameter. Furthermore, it preserves edges, and its output is devoid of the blurring and ringing artifacts associated with Gaussian and wavelet based algorithms. The procedure for correction of intensity inhomogeneity does not require the computationally intensive task of estimation of the bias field map. Furthermore, there is no requirement for a digital brain atlas which will incorporate additional image processing tasks such as image registration.
منابع مشابه
روشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)
The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...
متن کاملInteraction between noise suppression and inhomogeneity correction in MRI
While cardiovascular disease is the leading cause of death in most developed countries, SPAMM-MRI can reduce morbidity by facilitating patient diagnosis. An image analysis method with a high degree of automation is essential for clinical adoption of SPAMM-MRI. The degree of this automation is dependent on the amount of thermal noise and surface coil-induced intensity inhomogeneity that can be r...
متن کاملAn Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising
MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...
متن کاملNon-uniformity of Clinical Head, Head and Neck, and Body Coils in Magnetic Resonance Imaging (MRI)
Introduction Signal intensity uniformity in a magnetic resonance (MR) image indicates how well the MR imaging (MRI) system represents an object. One of the major sources of image non-uniformity in high-field MRI scanners is inhomogeneity of radio-frequency coil. The aim of this study was to investigate non-uniformity in head, head and neck, and body coils and compare the obtained results to det...
متن کاملReview of Intensity Inhomogeneity Correction Methods for Brain Mri Images
Intensity inhomogeneity is a smooth intensity change inside originally homogeneous regions. The intensity inhomogeneity degrades performance of image processing algorithms. Intensity inhomogeneity correction methods are important image processing algorithms which are used to reduce the inhomogeneity. Brain image intensity inhomogeneity correction is one of the most important parts of clinical d...
متن کامل